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Abstract: Order picking — as a warehouse function — is often considered to be
critical for the public manifestation of a supply chain. Underperformance can re-
sult both in unsatisfactory customer service and in high cost. In this paper the au-
thor will give an overview of planning problems and corresponding methods
which have been suggested in the literature for the reduction of cost and the im-
provement of customer service in picker-to-product systems. In particular, the fol-
lowing central issues will be addressed: item location, order batching, and picker
routing.
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1. Introduction

Order picking is a warehouse function critical to each supply chain. Underperfor-
mance results in unsatisfactory customer service (long processing and delivery
times, incorrect shipments) and high costs (labour cost, cost of additional and/or
emergency shipments), both being a significant threat to the competitiveness of
the total chain. Despite its criticality, order picking is not really a topic of major
interest, neither in academic research nor in industrial practice. Like other ware-
housing operations, it appears to be one of the most frequently overlooked, under-
funded, and inadequately planned corporate functions (Tompkins et al., 1996).
Furthermore, managers seem to be unaware of advanced planning techniques and
their potential with respect to reducing cost and improving customer service (Pe-
tersen, 1999, p. 1054).

The aim of this paper, therefore, is to review these planning techniques and to
demonstrate what benefits can be expected from their use in practice. Due to limi-
tations of space, the focus of the paper will be on conventional (manual) order
picking systems, for which the main operational planning issues will be intro-
duced, namely the assignment of items to storage locations, the transformation of
customer orders into picking orders, and the routing of pickers through the ware-
house. Corresponding planning techniques will be presented and discussed.

2. Order picking as a warehouse function

Order picking can be defined as the retrieval of items from their warehouse loca-
tions in order to satisfy demands from (internal or external) customers (Petersen/
Schmenner, 1999, p. 481). As a warehouse function order picking arises because
incoming articles are received and stored in (large-volume) unit loads while cus-
tomers order small volumes (less-than-unit loads) of different articles. Typically,
thousands of customer orders have to be processed in a distribution warehouse per
day.

Even though there have been various attempts to automate the picking process,
picker-less systems are rarely. found in practice. Order picking — like many other
material-handling activities — still is a repetitive, labour-intensive activity these
days (Petersen, 1999, p. 1055). Order picking systems, which involve human op-
erators can be organized in two ways, namely as a product-to-picker system, in
which the requested products are delivered automatically to a person at an in-
put/output (I/O) point, or as a picker-to-product system, in which a person (order
picker) travels to storage locations in order to collect the required products. Prod-
uct-to-picker systems have been studied extensively (Cormier/Gunn 1992), there-
fore the focus of this paper will be on picking systems of the second type.
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Typically, when order picking is organized as a picker-to-product system, the
storage area of the warehouse is divided into two parts, namely into a reserve
(storage) area, in which full unit loads are stored (usually on pallets), and into a
Jorward (picking) area, which is specifically designed to support and facilitate the
picking process of small, fast moving items and is replenished from the reserve
storage area (Ballou, 1967, p. 60). The picking area consists of a number of aisles
with the different products (items) stored at both sides of the aisles. The operations
of the order pickers may be restricted to a single aisle each (as in person-aboard
automatic storage/retrieval systems), or they may be free to access any aisle (as in
more conventional picking systems). Like it is common practice in the literature,
the order picking area of a warechouse will be addressed as the “order-picking
warehouse” below.

3. Order picking system

3.1. Basic system design and layout

In the order-picking warehouse to be considered here, the items are stored on pal-
lets in pallet racks. Picking is carried out from the lowest level, only. The storage
locations (bays) are of identical size, each can accommodate a single pallet. They
are located in a number of parallel, straight (picking) aisles, which run perpendicu-
lar to the front end of the picking area. The (picking) aisles are of equal length and
width (rectangular layout). Changing from one (picking) aisle to another is possi-
ble by means of two cross aisles, one at the front and one at the rear of the ware-
house. Fig. 1 depicts the layout of the picking area, which is consistent with the
warehouse layout literature (e.g. Bassan et al., 1980; Caron et al., 2000). More
specifically, it can be characterized as a one-block layout. (By introduction of one
or several additional cross aisles, a multi-block layout would be obtained.) In the
literature, the layout of Fig. 1 (see next page) is often considered as the basic lay-
out of an order picking area (Roodbergen/de Koster, 2001b, p. 32).

The input/output (I/0) point (also called depot or dock) defines a location where
the order picker enters the picking area, and where she/he afterwards returns to in
order to deposit the picked items. It will be assumed that the (I/O) point is located
in the middle of the front end of the warehouse.

The basis of the actual picking process is provided by a set of customer orders,
each one consisting of a number of order lines. An order line or position repre-
sents a product or item type (identified by an article number) and the correspond-
ing quantity, which has been requested by the customer. The set of customer or-
ders is assumed to be fixed and known in advance (off-line problem). Usually, the
customer orders will not be processed one by one. Instead, at first, the set of cus-
tomer orders is rearranged into a set of picking orders. A picking order may con-
sist of a subset of the positions from a customer order (in particular, if the cus-
tomer order is large), it may comprise several complete customer orders (in case
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of relatively small customer orders), or it may contain subsets of positions from
several customer orders.

rear cross aisle

picking aisle #1
picking aisle #2

LIIIITITTTITTIITTT

INEEEREEEEEEEN

front cross aisle

1/O point
Fig. 1. Picking-area layout

The actual picking process starts when the order picker receives a pick list at the
I/O point. Each pick list is a picking order to which information has been added
about

o the locations where the items are stored, and
e the sequence according to which the locations are to be visited.

In order to pick the requested items, the order picker collects a device such as a
small picking truck or a roll cage. Then she/he walks or rides to the respective
storage locations (pick location) and retrieves the products in the necessary quanti-
ties. The items are packed on the picking device, which facilitates transportation
of the picked items, but also enables her/him to collect items at several storage lo-
cations before she/he returns to the I/O point.

It is assumed that the aisles are wide enough to allow for overtaking and two-way-
travel. Items can be picked from both sides of an aisle in a single move (i.e. the
picker does not have to change her/his position significantly) such that the hori-
zontal distance between the racks in an aisle can be neglected (“narrow” aisles).
These characteristics define a standard order-picking warehouse to which we will
refer to unless otherwise stated.

3.2. Planning issues concerning policies and operations

For this review, a given order-picking warehouse of the standard type will be as-
sumed. Design issues, such as questions of layout optimization, will not be dis-
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cussed, here. Instead, we refer to the literature (e.g. Caron et al., 2000; Roodber-
gen, 2001; Vaughan/Petersen, 1999). The remaining planning issues have to be
addressed on two levels, on the level of policies and on the level of operations.
They are related to three main complexes (Caron et al., 1998),

e the assignment of items to storage locations (storage location),

e the transformation of customer orders into picking orders (order consolidation),
and

o the routing of pickers through the warehouse (picker routing).

In general, policies can be looked upon as basic principles according to which
processes are organized. They define the framework for subsequent operational
decisions. A storage policy determines how storage locations are allocated to
products. In dedicated storage all products are stored at fixed locations. Each arti-
cle can be found in the same location for a relatively long period of time. Within
this framework it has to be decided where the various item types should be stored
(item location problem). Randomized storage is a storage policy in which an in-
coming pallet is assigned to one of the currently available, empty locations. Over
time, the same article will be found in different locations. In conventional order-
picking systems, usually dedicated storage is preferred because the order picker
will become familiar with the locations of the various item types, which — in the
long run — will allow for a more efficient order picking.

The order consolidation policy is the principle according to which customer or-
ders are rearranged into picking orders. In single order picking each customer or-
der is directly taken as a picking order. Alternatively, when the order size is small
in relation to the capacity of the transportation device, order batching may be ap-
plied. In this case, several customer orders are combined into a batch, i.e. a single
picking order, which is retrieved by a single picker. The option of batching cus-
tomer orders gives rise to the question of how a given set of customer orders
should be combined into smaller subsets each of which representing a picking or-
der (order batching problem).

A routing policy is a principle for the design of picking tours through the ware-
house. Individual routing means that for each picking order it has to be decided in
which sequence the various pick locations are to be visited (picker routing prob-
lem). In other words, within the framework of individual routing an individual,
usually optimal tour has to be developed for each picking order. In practice, fre-
quently standardized routing is applied. The picking tour that corresponds to a
particular picking order is then developed on the basis of a simple routing strat-
egy. (A brief description of such routing strategies can be found, e.g., in Peter-
sen/Schmenner, 1999, pp. 482-487.) The most commonly-known strategtes are the
so-called traversal, return, largest-gap and composite strategies (see Fig. 2). They
have in common that only pick-location aisles are visited, i.e. aisles which contain
at least one pick location. The strategies will be introduced for one-block layouts
only, here. As for modifications for multi-block layouts, we refer to the literature
(e.g- Roodbergen, 2001, pp. 38 et sqq.)
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Fig.2. Routing strategies for a one-block layout

The black-marked bays of Fig. 2 indicate a set of pick locations, i.e. locations of
items, which have to be picked according to a given picking order (for this par-
ticular picker routing problem see de Koster/van der Poort, 1998, p. 471). Applica-
tion of the traversal strategy (see Fig. 2a), also called S-shape strategy (e.g. see
Roodbergen, 2001, p. 33), generates a tour in which each pick-location aisle is
traversed completely (with the exception of the last one, if an odd number of pick-
location aisles has to be visited). The picker starts at the I/O point, walks/rides to
the left-most pick-location aisle containing pick locations, enters it from the front
and leaves it at the rear, then proceeds to the next pick-location aisle, which is
traversed from the rear to the front, etc., until the last item has been picked from
which location the picker returns to the I/O point.

When the return strategy (see Fig. 2b) is applied, the order picker enters and
leaves all pick-location aisles from the same cross aisle (i.e. usually from the front
cross aisle). She/he traverses each pick-location aisle up the farthest pick location
and returns from there to the cross aisle.

According to the largest-gap strategy (see Fig. 2c), return trips into pick-location
aisles can be performed from both the front and the rear cross aisle. At which loca-
tion the picker has to turn back in a pick-location aisle is determined by the largest
gap. A gap represents a separation between the locations of two adjacent items to
be picked (picks) in a picking aisle, or between the location of the first pick in a
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picking aisle and the front cross aisle, or between the location of the last pick in a
picking aisle and the rear cross aisle. The picker takes a return trip from both the
front and the rear cross aisle if the largest gap is between two adjacent picks. Oth-
erwise, a return trip from either the front or the rear cross aisle is used. In each
case, the largest gap of a pick-location aisle to be visited represents the portion of
the aisles that will not be traversed by the order picker (Petersen/Schmenner,
1999, pp. 485 et sqq.). The left-most aisle that has to be visited will be traversed
completely in order to reach the rear cross aisle. Likewise, in order to make her/his
way back to the depot, the order picker will pass through the right-most pick-
location aisle to be visited completely from the rear to the front.

The composite strategy (Petersen, 1997, p. 1102; see Fig. 2d) combines elements
from both traversal and return strategy. It seeks to minimize the distance between
the farthest pick locations in two adjacent aisles (Petersen/Schmenner, 1999, pp.
486 et sqq.).

3.3. Planning goals

Within the framework of a given (standard) order-picking warehouse, minimiza-
tion of the total time necessary to process a given set of customer orders, or,
equivalently, to pick all items of a given set of customer orders (fotal processing
time, total picking time) is the central goal for planning and controlling the picking
processes. On one hand, a reduction of the total picking time corresponds to an in-
crease in the speed of the picking activities, resulting in shorter delivery times.
This, in turn, will improve the customer service. Likewise, on the other hand, a re-
duction in the total processing time leads to a smaller demand of man-power (or-
der pickers). In the short run, labour costs related to overtime, temporary staff etc.
can be reduced. In the long run, the necessary number of permanent staff may also
decrease.

Improving the performance and reducing the cost of the system therefore means
reducing the total picking time (Caron et al., 2000, p. 101). From this point of
view it is worthwhile to analyse what the components make up for the total pick-
ing time and how these components can be influenced by the above-described de-
cisions. The time necessary to complete picking of a customer/picking order in-
cludes (Petersen, 1999, p. 1055)

e the time needed at the I/O point for performing the necessary administrative
(obtaining and studying the pick list) and set-up tasks (e.g. collecting a picking
cart or vehicle),

o the time for traveling from the I/O point to the first storage location, between
the storage locations, and back to the I/O point from the last storage location,

e the time needed at each storage location for identifying the storage location and
the article, picking the required quantity, placing the items on the picking cart
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or vehicle, sorting them if necessary, and confirming the pick on the pick list,
and

o the time needed at the I/O point for performing the final administrative and
other closing tasks (unloading the picking cart or vehicle, sorting the collected
items, depositing the transportation device, etc.).

Most of these time elements are independent from the above-described decisions.
The exception is the time the order picker spends for traveling between the storage
locations and from and to the I/O point. Thus, the minimization of the fotal travel
time, i.e. the time necessary to collect all items of a given set of customer orders,
can serve as a goal in decisions, which have to be made on the policy and opera-
tions levels.

Furthermore, it is usually realistic to assume (Jarvis’/McDowell, 1991, p. 94) that
the total travel time is a monotone increasing function of the total distance the or-
der pickers have to cover in order to collect all items of a set of customer orders
(total travel distance). If the total travel distance is reduced, then also both the to-
tal travel time and the total picking time will decrease. Consequently, models and
methods for decision problems on the policy and operations level often include
minimization of the total travel distance as an auxiliary goal.

Finally, it has to be noted that — as long as the set of customer orders is fixed — it
also makes sense to replace the goals introduced above by corresponding aver-
ages, i.e. to consider the minimization of the average total picking time per order,
the average total travel time per order, or the average total travel distance (also:
average tour length) per order instead.

4. Item location

4.1. Problem definition

The item-location problem for dedicated storage can be stated as follows:

Given an order-picking warehouse with specified potential locations for the
storage of item types and a set of customer orders each requiring to collect
a specific set of items, how should the item types be assigned to the avail-
able locations such that the total length of the picking tours necessary to
collect all items is minimized.

It has to be noted that the item location problem is strongly interconnected with
both the order batching and the picker routing problem. In fact, only a simultane-
ous solution of all these problems could prepare the road to “globally” optimal so-
lution. Again, this is not a very realistic approach. Instead, one usually ignores the
order batching-problem at this stage by simply taking the customer orders as pick-
ing orders. The remaining problem, however, still is a very difficult one. If we as-
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sume for a moment that we have solved the sequencing problem for each of the
picking orders beforehand, then we would know how many times we have to pro-
ceed from an item type i to an item type j, and the remaining item location prob-
lem could be modelled as a quadratic assignment problem. This optimization
problem is known to be NP-hard, thus we conclude that the original item location
problem is also NP-hard at least. As the size of the instances of the quadratic as-
signment problem, which can be solved to an optimum, is rather limited (25 item
types/locations) while — in relation to this size — real-world item location-problems
tend to be quite large (more than 500 item types/locations), it cannot be expected
that exact solution methods are applicable to real-world problem instances. Con-
sequently, all methods suggested for the item location problem in the literature so
far are heuristics.

4.2. (Heuristic) solution approaches

Heuristic approaches to the item location problem can be distinguished into three
classes of methods, turnover-based, complementarity-based, and contact-based
methods.

4.2.1. Turnover-based methods

Turnover-based methods (also: volume-based or frequency-based methods) con-
sider the demand frequencies of the item types, only. Here, the turnover or de-
mand frequency of an item type is equal to the number of times it appears in a cus-
tomer order during a specific period of time. It can be expected that the
distribution of these frequency has a direct influence on the extent to which alter-
native storage policies affect picking times and costs (Kallina/Lynn, 1976; Malm-
borg, 1996). The distribution is usually represented by an ABC curve, which — in
this context — can be characterized by a percentage ratio such as 20/80 which
means that 20% of the item types are responsible for 80% of the demand frequen-
cies (for details see Malmborg, 1996, pp. 365 et sqq.).

In case all item types require a single storage location each (i.e. the same amount
of storage space), the item types are sorted in a non-increasing order of these fre-
quencies, while, on the other hand, the available locations are sorted in a non-
decreasing order with respect to their distances from the I/O point. Then the first
item type is assigned to the first location, the second item is assigned to the second
location, etc., yielding a solution in which frequently demanded items are located
in close neighbourhood to the I/O point while less demanded items are located fur-
ther away (for this standard frequency-based location strategy see Neal, 1962). It
can be shown (Kallina, 1976) that this procedure provides an optimal solution for
a rather restricted planning situation, namely when each picking order consists of
one position each (i.e. in the case of an out-and-back system, which is more typi-
cal for a product-to-picker system). In the system considered here, an — often large
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— number of items has to be collected on a tour through the warehouse. As the
standard frequency-based location strategy — like the other frequency-based meth-
ods, which will be discussed below — ignores this aspect it cannot be expected that
their application provides optimal (or even near-optimal) solutions for the above-
stated item location problem.

Instead of considering the exact distances between the available locations and the
/O point, in the literature, at times, “storage-allocation patterns™ are used accord-
ing to which item types are assigned to locations (Petersen, 1999; Peter-
sen/Schmenner, 1999, pp. 487 et sqq.). Such storage-allocation patterns are de-
picted in Fig. 3. They indicate, where high-frequency, medium-frequency, and
low-frequency item types are to be stored. Jarvis and McDowell (1991) have
proven that when the traversal strategy is applied for solving the routing problem,
within-aisle storage provides an optimal allocation scheme for symmetric order-
picking warehouses with respect to the average tour length. They have also shown,
however, that this is not necessarily the case for a non-symmetric warehouse,
where the I/O point is not located in the middle of the front of the warehouse. Pe-
tersen and Schmenner (1999), by means of extensive numerical experiments, have
evaluated — among other policies — diagonal, within-aisle, and across-aisle storage.
They found that within-aisle storage generally outperforms diagonal and across-
aisle storage, providing average tour length savings of 10-20% (Peter-
sen/Schmenner, 1999, pp. 494, 498).

An early modification of the standard frequency-based location strategy does not
only take into account the demand frequencies of the item types but also their
space requirements, which may be different for different item types. Heskett
(1963, 1964) introduced the so-called cube-per-order index (COI) which is de-
fined as the ratio of the required storage space to be allocated to an item type to its
demand frequency per period (also see Ballou, 1967; Kallina/Lynn, 1976). The
concept of the COI is to locate compact, high-frequency item types (low COI)
close to the input-output point, and shift bulky, slow-moving items to remote stor-
age locations. Several extensions of the COI concept have been described in the
literature, in which aspects such as inventory cost (Wilson, 1977), or zoning con-
straints (Malmborg, 1995) have been considered. Again, results stemming from
this research are of little value for the problem under discussion here, because they
have been deduced under the assumption of a simple out-and-back system, too.
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Fig. 3. Storage allocation patterns

4.2.2. Complementarity-based methods

A second class of methods tries to take into account the complementarity between
items, which is documented by the fact that certain pairs of item types are de-
manded together more frequently and therefore appear more often together in the
same customer/picking order than others. These methods, which will be called
complementarity-based here, cluster the item types into groups according to a
measure of the strength of the joint demand (complementarity) and locate the
members of a cluster as close to each other as possible. Thus, two major phases
can be distinguished:

e identification of clusters of item types, which are demanded together frequently
(clustering problem);

e clusterwise assignment of items to locations (location-assignment problem).

During the first phase, it has to be determined how the complementarity between
the item types should be measured, how many clusters should be formed, and, of
course, which item types go into each cluster.

Rosenwein (1994) has shown that the clustering problem can be formulated as a p-
median problem, which is also frequently used in general cluster analysis (for a
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formulation of the p-median problem and its relationship with general cluster
analysis see Mulvey/Crowder, 1979). His approach is based on a non-
complementarity measure (“distance”) for each pair (i, j) of item types i and j. Liu
(1999, p. 991), on the other hand, uses a measure of similarity.

In general, the drawback of these approaches is related to the problem of assigning
the clustered item types to locations. Rosenwein (1994) does not explain how this
problem should be solved. Liu (1999, pp. 997 et sqq.) proposes to identify the item
type with the largest demand and assign it to a location closest to the I/O point.
Then all other item types of the same cluster are assigned to locations according to
the standard frequency-based location strategy. These steps are repeated until all
item types have been assigned. Liu exemplifies his approach on a simple order
picking system, which basically consists of one picking aisle. However, for a
multi-aisle multi-block system, location assignment will have to follow one of the
storage-allocation patterns (diagonal, within-aisle, and across-aisle storage) de-
scribed above. Solutions obtained in this way appear not be very satisfactory, as it
is very likely — especially with a small number of clusters — that item types of a
single cluster have to be split between different aisles. That, however, contradicts
the original idea of this complementarity-based approach of locating jointly de-
manded item types in close proximity.

4.2.3. Contact-based methods

Another basic drawback of the complementarity-based approach to the item loca-
tion problem can be seen in the fact that, even though two item types i and j ap-
pear in the same customer order, an order picker will not necessarily proceed di-
rectly from the location of item type i to the location of item type j (or vice versa).
Thus, in order to minimize the total travel distance, it would be more desirable to
take into account the number of times an order picker really travels directly be-
tween the locations of two item types i and j, i.e. the number of times she/he picks
either item type j directly after item type i, or item type i directly after item type j,
respectively. Methods, which allocate item types to locations with respect to the
number of these direct travels (contacts), will be called contact-based, here. Un-
fortunately, the contact frequencies c(i,j) between item types i and j are not known
in advance but stem from the (optimal) solutions of the routing problems related to
the set of customer/picking orders under consideration. The solution of the routing
problems, however, is dependent on the location of the item types, which again
demonstrates the strong interrelationship between item location and routing. Due
to the fact that a simultaneous solution of both problems is not a realistic ap-
proach, at least not for problem instances of the size encountered in practice, con-
tact-based solution methods alternate between the two problem types.

The method of van Oudheusden et al. (1988, pp. 279 et sqq.) can be characterized
as a classic local-search method. It starts from an initial allocation of item types to
storage locations, for which the distances d(i,j) between all pairs (i,j) of item types
i and j are computed. Given these distances, an (optimal) solution is determined
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for each of the routing problems associated with the set of customer/picking or-
ders. These solutions provide the contact frequencies c(i,j) for every item pair (i,j).
The total travel distance TTD associated with the initial item allocation can be
calculated as

(1) TID= Y iel D el dij)edy)

(I: index set of item types). Based on the current values of the contact frequencies
¢(ij), the method tries to improve the value of (1) by means of a pairwise ex-
change of the locations of two item types. The improvement phase is performed in
terms of a strict hill-descending procedure in which an exchange of locations is
accepted only if the value of (1) is reduced. After each exchange, the distances
d(i,j) are updated, while the contact frequencies c(i,j) are left unchanged for the
time being. This is for the obvious reason that an update of the c(i,j)-values is a
very time-consuming activity because it requires to determine all picking tours
anew. The contact frequencies c(i,j) will not be updated before no further ex-
change of locations can be identified, which improves the value of (1). At that
stage, the routing problems are resolved and the new, “real” value of TTD is com-
puted on the basis of the new contact frequencies. The current item allocation now
serves as the starting point for another execution of the improvement phase. The
method terminates if the contact frequencies have been updated but no pairwise
exchange of item locations can be found that would improve the current objective
function value (1). The authors applied their approach to real-world data from a
central warehouse of an integrated steel mill. They found that the existing, obvi-
ously not very well planned item allocation could be improved significantly and
that, in connection with improved routing, savings in picker travel time of up to
83% were possible (van Oudheusden et al., 1988, pp. 281 et sqq.).

Reschke and Wischer (2000) present three local search-methods, which are also
based on the pairwise exchange of storage locations. However, their methods are
different to that of van Oudheusden et al. in the sense that the exact value of the
new total travel distance TTD is computed each time before the decision is made
about whether to accept an exchange or not. Reschke and Wischer demonstrate
that it is not necessary to determine a new (optimal) tour for every cus-
tomer/picking order at each iteration but that it is sufficient to consider only such
tours, which contain exactly one of the two exchange items (Reschke/Wischer,
2000, pp. 143 etsqq.). The first proposed method is a classic (2-opt) hill-
descending method, which only accepts an exchange of locations if it improves
the current solution. The remaining two methods are based on Simulated Anneal-
ing (e.g. see van Laarhoven/Aarts, 1992) and Threshold Accepting (see
Dueck/Scheuer, 1990), which — at least temporarily — allow the objective function
value (1) to deteriorate in order to avoid being trapped in a local minimum.
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4.3. Discussion

In general, it has to be stated, that there is very little reliable information available
with respect to the (relative) solution quality and computing times of the presented
algorithms. According to the best of our knowledge, the numerical experiments
carried out by Reschke and Wascher (2000, pp. 144 et sqq.) are the only ones in
which several methods have been directly compared to each other so far. The fo-
cus of these experiments was on contact-based methods. The authors implemented
the method by van Oudheusden et al. and the three above-described local search-
methods and applied them to 140 randomly generated problem instances. The
problem instances were grouped into 14 problem classes characterized by parame-
ters such as the average number of positions per customer/picking order, degree of
complementarity between item types and skew of the ABC-curve of the demand
frequencies. Initial solutions were provided by the standard frequency-based loca-
tion strategy. The corresponding objective function values also served as bench-
marks for the assessment of the solution quality.

It could be shown that all local search-methods improve the initial solutions sig-
nificantly. The solution quality of Simulated Annealing and of Threshold Accept-
ing turned out to be almost equivalent. On the average, these methods reduced the
objective function value to 61-77% of the benchmark. Generally, the results indi-
cate the existence of significant opportunities for picker-productivity improvement
in practice, where items are usually assigned to storage locations by means of the
standard frequency-based location strategy. On each of the problem classes, Simu-
lated Annealing and Threshold Accepting both outperformed the classic 2-opt hill-
descending method, which, on average, reduced the objective function values
down to 66-77% of the benchmark. The hill-descending method, in turn, outper-
formed the method by van Oudheusden et al., which achieved a reduction down to
69-83% of the benchmark. For Simulated Annealing and Threshold Accepting the
improvements were generally larger on problem instances with a smaller number
of picks per customer/picking order, less skew of the ABC frequency curve and a
smaller degree of complementarity.’

On the other hand, improvements in the solution quality come at the expense of
dramatically increased computing times. As could be expected with respect to the
extensive computations necessary at each iteration (determination of the new op-
timal picking tours), the computing times per problem instance can easily amount
to hours for Simulated Annealing and Threshold Accepting on a PC. However,
such computing times may still be acceptable in practice, because the item-
location problem is usually not a time-critical one and solved in long time inter-
vals (once a year or once in six months) only.
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5. Order batching

5.1. Problem statement

The order batching problem can be stated as follows:

inen a set of customer orders, each consisting of a number of orderlines, a
given assignment of items to storage locations in a standard order-picking
warehouse and a given capacity of the picking device, how should the cus-
tomer orders be grouped (batched) into picking orders such that no cus-
tomer order is split between two or more picking orders and the total
lengths of all picker tours necessary to collect all items is minimized.

The batching problem is also known to be NP-hard. Consequently, with respect to

the size of problem instances encountered in practice, research has concentrated
on methods of the heuristic type.

5.2. Solution methods

The heuristics suggested in the literature for the order batching problem can be

cla;fsiﬁed into priority rule-based algorithms, seed algorithms and savings algo-
rithms.

5.2.1. Priority rule-based algorithms

Thes; algorithms a§sigl} a priority to each customer order, at first. Then, in the or-
de}' given by the priorities, the customer orders are assigned one by one to batches
(picking orders) in a way that the capacity constraint is not violated.

Several suggestions have been made in the literature with respect to the determina-
tion of the priorities. The most straightforward specification is the First-Come-
First-Serve (FCFS) Rule. Gibson and Sharp (1992) suggested two-dimensional
and four-dimensional space-filling curves to be used. These approaches map the
coordinates of the locations of the items of a customer order into a (theta-) value
on the unit circle. The theta-values range from 0 to 1. The larger the theta-value is,
which has been assigned to a customer order, the higher is its priority.

Next-Fit (batches are completed with orders in the sequence given by the priori-
ties; every time the addition of another customer order would violate the capacity
constraint, a new batch is started), First-Fit (batches are numbered in the sequence
in which they are started; the current customer order is assigned to a batch with
the smallest number into which it fits), and Best-Fit (of those batches into which a
customer order would fit, it is assigned to that one where it leaves the smallest re-
maining capacity) are specifications of the batch selection rule.
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5.2.2. Seed algorithms

Seed Algorithms have been introduced into the literature by Els.ayed (1981) agd
by Elsayed and Stern (1983), who considered them for automatic warc.zhouses in
the first place. A systematic study for manual warehouse§ is pr_esented in de Ko§-
ter et al. (1999). Seed methods generate batches sequentially, i.e. a new batch is
not started before the current one has been closed. In order to form a batch, a cus-
tomer order is selected as the so-called “seed” of the batch. Further, not yet as-
signed customer orders are added to the batch until its capacity is exhausted.

For the seed-selection rule, several options have been discussed in t‘he literature
(de Koster et al., 1999, p. 1483), namely — among others — the selectlor} of a ran-
dom order, an order with the largest number of positions (i.e. selection of the
“largest” order), an order with the longest picking tour, an order with the most dis-
tantly-located item (i.e. the item located furthest away frpm the depot),. an order
with the largest number of aisles to be visited, an order with _the largest aisle range
(i.e. the largest difference between the aisle numbers of the nght-rr}ost .and the left-
most aisle to be visited), etc. The seed-selection rule can be appl{ec.l in two ways
(de Koster et al., 1999, p. 1484), in a single mode (in which the orlglna'llly selecte:d
customer order only serves as seed for the present batch) or a cumulative mode (in
which all customer orders already assigned to the current batch make up for the
seed of the batch).

The order-congruency rule determines which unassigned customer orfler should
be the next one to be added to the current batch. Usually, an order is selected
which “distance” to the seed of the current batch is minimal. This distance be-
tween an unassigned order and the seed can be defined in several ways, e.g. (de
Koster et al., 1999, p. 1484) as

o the sum of the travel distances (measured in length or time units or in the_ num-
ber of aisles) between every location of a seed item and the closest location of
any item in the order,

o the sum of the travel distances between every location of an item in the order
and the closest location of any item in the seed,

e the number of additional aisles which have to be visited if the order would be
added to the seed,

o the difference between the gravity centre of the seed and the gravity centre of
the order (where the gravity centre of an order is defined as the average aisle
number of the locations of the items in an order), etc.

5.2.3. Savings algorithms

i i - ; Elsayed/Unal, 1989,
Savings algorithms (de Koster et al., 1999, pp. 1485 14873 E ‘
pp- 1099-1101) are based on the well-known Clarke-and-Wright-Algorithm for_ the
vehicle-routing problem (Clarke/Wright, 1964). Let d(q) be the length of the pick-
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ing tour for order q, d(r) the length of the respective tour for order r, and d(qer) the
length of a single picking tour in which the items of both order q and r are col-
lected. Thus, the savings s(q,r) of combining the two orders q and r in a single tour
can be computed as s(q,r) = d(q) + d(r) - d(qer).

The pairs (q,r) of the customer orders are sorted in a non-ascending order. Accord-
ing to this order the pairs are examined. Three situations have to be considered:

¢ None of the orders q and r has been assigned: In this case, a new batch is
opened, and q and r are assigned to it.

® One of the orders q and r has already been assigned: The other order will be as-
signed to the same batch if the remaining capacity is large enough. Otherwise
the next order will be checked.

* Both orders q and r have already been assigned: In this case, the next pair of
orders will be checked.

In the end, customer orders might be left which cannot be combined with each
other, due to the limited capacity of the picking device. They are assigned to an
individual batch each. Furthermore, a recalculation of the savings s(q,r) any time
one or two customer orders have been assigned to a batch is likely to improve the
solution quality of the algorithm.

The EQUAL-Algorithm (Elsayed/Unal, 1989, pp- 1099 et sqq.) is a savings algo-
rithm that generates batches sequentially. The first batch is started with a pair of
customer orders q and r which can be combined in a batch and for which the sav-
ings s(q,r) are maximal. These two orders are taken as an initial seed. Then an or-
der is added to the batch, which is chosen such that the savings of combining the
seed with an unassigned order is maximized and the capacity of the picking device
is not violated. The old seed and the newly added customer order form the new
seed. This is repeated until the capacity of the picking device does not permit to
add another customer order. Then a new batch is opened and completed in the
same way etc.

In the Small-Large- (SL-) Algorithm (Elsayed/Unal, 1989, p. 1100), the set of cus-
tomer orders is divided into two subsets, namely into a set of large orders (con-
taining a number of items larger than a pre-specified number) and into a set of
small orders (containing the remaining orders). To the set of large orders, the
EQUAL-Algorithm is applied. Next, the set of small orders is sorted in non-
ascending order of their size. In this sequence, the small orders are assigned, each
order to that batch where it results in the largest savings without violating the re-
maining capacity. For an order which cannot be assigned a new batch is opened.

5.3. Discussion

The FCFS-Heuristic cannot really be considered as a competitive method for the
solution of the order batching problem. In fact, it is usually only taken as a
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benchmark method to which other methods are compared in terms of solut'ion
quality and computing times. Gibson and Sharp (1992) have carrigd out numerical
experiments with priority rule-based algorithms, in which the priorities were QC-
termined by means of space-filling curves, and with a basic seed algop@m, Whlf:h
they introduced into the literature under the name of Sequential Minimum Dis-
tance (SMD) Batching Heuristic. They found (Gibson/Sharp, 1992, p. 67) that for
warehouses where the distances between locations are measured according to an
aisle metric (and not in terms of a Euclidian, Chebyshev, or rectilinear metric), the
SMD Heuristic provided the best solutions.

De Koster et al. (1999) have carried out extensive numerical experiments 'with
seed and savings algorithms. The heuristics were evaluated with respect to differ-
ent parameters such as the warehouse type, the location of the depot, and the num-
ber of orders per batch. Two routing strategies, traversal and largest-gap, were in-
vestigated. The total travel time served as the overall pgrfgrm.ance measure,
permitting that influencing factors such as the travel speed within aisles, the speed
outside aisles, and the time to enter and leave aisles could be considered. The au-
thors concluded (de Koster et al., 1999, pp. 1498 et sqq.) that the routing strategy
should be selected first before the batching strategy is chosen. In case of a large
number of items to be picked per aisle and substantial aisle-changing time, the tra-
versal strategy is favourable, otherwise the largest-gap strategy is to be pr_eferred.
If the traversal strategy is used and the capacity of the picking vehicle is large,
then seed algorithms provide the best results. On the other hand, if the largest-'gap
strategy is applied and the capacity of the picking vehicle is small, then savings
algorithms provide superior results. In this situation, the best resu'lts were obtained
by the basic algorithm, which included recalculation of the savings s(q,r). How-
ever, these results came at the expense of long computing times. It consumed
about ten times the computing time of the other savings algorithms and about 100-
200 times the computing time of seed algorithms.

6. Picker routing

6.1. Problem statement

The third problem to be considered here concerns the routing of the order pickers.
It can be formulated as follows:

Given an assignment of items to storage locations in a standafd order-
picking warehouse and a set of picking orders each requiring to plgk a cer-
tain set of items, in which sequence should the locations of the items in
each picking order be visited such that the length of the total travel distance
is minimized.
We note that, at this stage, the picking orders are fixed. The total lengtl:1 of all
picking tours will be minimized if each tour length is minimized individually.
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Thus, for each picking order, a Traveling Salesman Problem (TSP) has to be
solved to give an optimal tour between the locations of the items to be picked. The
general TSP is known to be NP-hard. However, Ratliff and Rosenthal (1983) have
shown that the above TSP related to order picking in a rectangular warehouse can
be solved in polynomial time.

6.2. Solution methods

6.2.1. Exact (optimal) methods

In order to formulate a model of the picker routing problem, an approach outlined
in de Koster/van der Poort (1998), Roodbergen (2001), and Roodbergen/de Koster
(2001b) will be described. According to this approach, the picker routing problem
in a standard warehouse can be modelled by means of a valued, undirected multi-
graph G. Let m denote the number of locations from which items have to be
picked as defined by the corresponding picking order. Furthermore, let n denote
the number of picking aisles in the warehouse. Then the vertex set ¥ of the graph
G consists of m elements v;, each one representing a pick locationi (i=1, ..., m),
n elements a;, where a; represents the location of the front end of aisle j, n ele-
ments b;, where b; represents the location of the rear end of aisle iG=1,...,n),
and an element v, representing the location of the /O point.

Any two vertices which correspond to adjacent locations in the warehouse are
connected by a pair of undirected, parallel arcs. Two arcs are introduced because
the path between two adjacent locations may be chosen more than once in a pick-
ing tour, while — on the other hand — in an optimal (minimum length) tour the or-
der picker will not have to walk more than twice between any pair of locations
(Ratliff/Rosenthal, 1983, p. 510). The values assigned to each arc represent the
length of the path between the corresponding two locations. A multi-graph G,
which has been constructed in this way to represent a routing problem in a stan-
dard warehouse, will be called an order-picking graph (de Koster/van der Poort,
1998, p. 471).

An order-picking tour is a cycle in G that contains each of the vertices vi(i=0,1,
..., m) at least once, the length of the tour is the sum of the values of the arcs in-
cluded in the cycle. A subgraph T of G that contains all vertices vi(i=0,1,...,m)
of G will be called a four subgraph of G if there is an order-picking tour that uses
each arc in T exactly once. As an order-picking tour can be generated from a given
tour subgraph by a very simple (efficient) procedure (Ratliff/Rosenthal, 1983, pp.
518 et sqq.), the problem of constructing a minimum-length picking tour in an or-
der-picking graph of a standard order-picking warehouse is reduced to finding a
minimum-length tour subgraph of the corresponding order-picking graph. Ratliff
and Rosenthal (1983, pp. 513-516) present an algorithm for this problem, which is
linear in the number of aisles. Therefore, their optimal algorithm is fast enough to
be applied to any real-world instance of the picker-routing problem in standard
warehouses.



342  Gerhard Wischer

Goetschalckx and Ratliff (1988) developed an efficient optimal algorithm for the
picker-routing problem in a one-block warehouse with wide aisles, where the or-
der picker cannot reach items on both sides without changing her/his position.
Furthermore, the authors discovered that unless the pick density (i.e. the number
of the locations from which items have to be picked in relation to the total number
of locations) is greater than 50%, picking from both sides of the aisle in the same
pass yields significantly shorter tours than picking one side first and then returning
on the other side.

Based on the algorithm by Ratliff and Rosenthal, several approaches have been
developed for solving picker-routing problems in other, non-standard warehouses.
In de Koster/van der Poort (1998) the algorithm is modified for solving such prob-
lems in warehouses with decentralized depositing, in Roodbergen/de Koster
(2001b) for problems in order-picking warehouses with a middle cross aisle. In
Roodbergen/de Koster (2001a) the authors use a branch-and-bound method to ob-
tain optimal tours for warehouses with multiple cross aisles.

6.2.2. Heuristic methods

The above-introduced routing strategies (traversal, return, largest-gap, combined)
can be seen as heuristic solution methods for the picker-routing problem. Initially,
research efforts concerning this type of methods concentrated on the development
of approximations for the (average) tour length. Kunder and Gudehus (1975) con-
sider the traversal and the return strategy and present formulae from which the
(expected) average travel time per pick can be computed for any value of parame-
ters such as the number of aisles, aisle length, aisle width, number of articles in the
warehouse, number of pick locations, picker speed, etc. Their research is extended
by Hall (1993), who considers the traversal and largest-gap strategy. His analysis
shows that the largest-gap strategy is to be favoured in warehouses with narrow
aisles if the number of picks is less than 3.8, otherwise the traversal strategy ap-
pears to be superior. Petersen (1997) compared — among others — traversal, return,
largest-gap, and composite routing strategies by means of numerical experiments.
He found that the composite and largest-gap heuristics perform best. In these three
papers, however, analysis and experiments are carried out under the assumption
that pick locations are independent and uniformly distributed (which does not ap-
pear to be very realistic for order-picking warehouses).

Caron et al. (1998) investigate the expected total travel distance of the traversal
and the return strategy for COI-based storage. The deduced approximations are
validated by means of numerical experiments. The authors find that whether the
traversal or the return strategy has to be preferred is affected by the average num-
ber of picks per aisle and the skew of the ABC frequency curve in the first place
while the number of aisles is a less critical parameter. The return strategy outper-
forms the traversal strategy only for a small number of picks per aisle (i.e. < 1)
and for skewed ABC curves; otherwise the traversal strategy is superior. For a
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large number of picks per tour the traversal strategy outperforms the return strat-
egy, irrespective of the skew of the ABC curve (Caron et al., 1998, p. 731).

Petersen (1999) compares several routing strategies (traversal, largest-gap, com-
posite) in a volume-based storage environment by means of extensive numerical
experiments. The performance measure is the (average) total time necessary to
collect all items of a picking order and includes a time-estimate for all non travel-
related activities. His findings are (Petersen, 1999, pp. 1059 etsqq.) that for
within-aisle storage the composite routing strategy performs best. For small pick-
ing orders the performance of the largest-gap strategy is almost identical, but it
becomes inferior for picking orders containing more than nine positions. For order
sizes of more than 28 positions the largest-gap strategy even becomes inferior to
the traversal strategy. For diagonal storage, both composite and largest-gap strate-
gies perform almost equally well and outperform the traversal strategy for all or-
der sizes considered (up to 50 positions).

6.3. Discussion

The application of a routing heuristic instead of an optimal algorithm involves ac-
cepting an inferior solution quality. De Koster and van der Poort (1998) carried
out a series of numerical experiments in order to compare the performance of the
traversal heuristic to that of an optimal algorithm for three different types of order-
picking warehouses (narrow-aisle high-bay warehouse, shelf picking, and standard
warehouse). The authors assumed randomly distributed picking locations. For the
first two types they found that the traversal strategy generated solutions which
were — on average — between 7.3% and 20.8% above the optimum in terms of
travel time and between 2.4% and 5.8% above the optimum in terms of total pick-
ing time. The differences were more significant for the standard warehouse, in
which the heuristic rated above the optimum between 26.6% and 34.2% with re-
spect to travel time and between 11.2% and 13.9% with respect to total picking
time. In Petersen’s experiments (Petersen 1997) also random storage has been as-
sumed. The heuristics, which came out best, composite and largest-gap, were
found to be 9-10% over optimal on average in terms of tour length. In another se-
ries of experiments, in which frequency-based storage was assumed, Petersen and
Schmenner (1999) compared the solutions of several heuristics to those obtained
by an optimal algorithm. The more advanced heuristics, largest-gap, composite,
and midpoint, came out, on average, 7.1%, 10.2%, and 12.0% over optimal. With
27.9% and 30.9% over optimal, the simpler return and traversal strategies per-
formed significantly worse (Petersen/Schmenner, 1999, p. 492).

Given the fact that the Ratliff-Rosenthal-Algorithm solves the picker-routing
problem in polynomial time and can be applied to any real-world problem in-
stance, and given the inferior solution quality of heuristic routing methods, one
may ask why anyone would use a heuristic method. First of all, our discussion has
focussed on routing problems in standard order-picking warehouses. Real-world
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warehouses may have different layouts or other specific properties for which no
exact algorithm has been. developed so far. Secondly, the difference between a
minimum-length tour and a heuristically-obtained solution may not always' be
really significant, because practical situations exist in whic?h tqtal travel time
represents only a relatively small proportion of the total picking time. De Koster
and van der Poort (1998, p. 478) mention that the travel time is often only abm_.lt
50% of the (total) picking time. Finally, optimal tours may not always work in
practice, because they can be confusing for the order picker and increase the prob-
ability of missing picks. Heuristics, on the other hand, often can be u{ldcrstood and
remembered more easily and require less concentration when being executed.
These advantages of heuristics have to be compared against the savings in travel
time and travel distance from optimal routing (Petersen, 1999, p. 1054).

7. Conclusions

It should have become clear from the previous discussion that by means of ad-
vanced planning techniques, which are available today, it is pos§ible to improve
the performance of order picking operations significantly, both with respect to or-
der processing times and picking costs. On the other hand, it is also ql?vmus that
the present knowledge is still insufficient in several areas and that add1t19nal stud-
ies are necessary to improve the state-of-the-art. This concerns the solution me_th-
ods for the item-location problem, which seem to provide good-quality solution
but require too much computing effort. With respect to the order-ba_tching prob]em
it is striking that only construction methods have been presented in the 11teratu1:e
so far, while neither any improvement methods have been suggested nor the appli-
cation of meta-heuristics has been investigated. Finally, due to the close relation-
ship between order-batching and optimal routing, it might be worthwhile to con-
sider a simultaneous solution approach for these two problem areas.
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